Medina Cruz D, Mi G, Webster TJ (2018) Synthesis and characterization of biogenic selenium

nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-

resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J

Biomed Mater Res A 106(5):14001412

Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of

antibacterial activity of copper oxide nanoparticles. RSC Adv 5(16):1229312299

Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. In: Virulence mechanisms of

bacterial pathogens. Wiley, Hoboken, pp 481511

Nguyen NYT, Grelling N, Wetteland CL, Rosario R, Liu H (2018) Antimicrobial activities and

mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and

biolms. Sci Rep 8(1):123

Niskanen J, Shan J, Tenhu H, Jiang H, Kauppinen E, Barranco V, Pico F, Yliniemi K, Kontturi K

(2010) Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid

Polym Sci 288:543553

ONeill J (2018) Tackling drug-resistant infections globally:nal report and recommendations.

2016. HM Government and Welcome Trust: UK. https://amr-review.org/sites/default/les/160

525_Final%20paper_with%20cover.pdf. Accessed 3 Dec 2020

Ostadhossein F, Misra SK, Tripathi I, Kravchuk V, Vulugundam G, LoBato D, Selmic LE, Pan D

(2018) Dual purpose hafnium oxide nanoparticles offer imaging Streptococcus mutans dental

biolm andght it in vivo via a drug free approach. Biomaterials 181:252267

Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticlesan antimi-

crobial study. Sci Technol Adv Mater 9(3):035004

Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allison DP,

Joy DC, Allison MR, Brown SD (2010) Effects of engineered cerium oxide nanoparticles on

bacterial growth and viability. Appl Environ Microbiol 76(24):79817989

Piddock LJ (2006) Multidrug-resistance efux pumps? Not just for resistance. Nat Rev Microbiol

4(8):629636

Pitout JDD (2010) The latest threat in the war on antimicrobial resistance. Lancet Infect Dis 10(9):

578579

Poole K (2002) Mechanisms of bacterial biocide and antibiotics resistance. J Appl Microbiol 92:55

64

Prashanth PA, Raveendra RS, Hari Krishna R, Ananda S, Bhagya NP, Nagabhushana BM,

Lingaraju

K,

Raja

Naika

H

(2015)

Synthesis,

characterizations,

antibacterial

and

photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J Asian

Ceramic Soc 3(3):345351

Raba-Páez AM, Malafatti JOD, Parra-Vargas CA, Paris EC, Rincón-Joya M (2020) Effect of

tungsten doping on the structural, morphological and bactericidal properties of nanostructured

CuO. PLoS One 15(9):e0239868

Rakshit S, Ghosh S, Chall S, Mati SS, Moulik SP, Bhattacharya SC (2013) Controlled synthesis of

spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: a

cost effective and eco-friendly approach. RSC Adv 3(42):1934819356

Rammelkamp CH, Maxon T (1942) Resistance of Staphylococcus aureus to the action of penicillin.

Proc Soc Exp Biol Med 51(3):386389

Rice KM, Ginjupalli GK, Manne ND, Jones CB, Blough ER (2019) A review of the antimicrobial

potential of precious metal derived nanoparticle constructs. Nanotechnology 30(37):372001

Rispoli F, Angelov A, Badia D, Kumar A, Seal S, Shah V (2010) Understanding the toxicity of

aggregated zero valent copper nanoparticles against Escherichia coli. J Hazard Mater 180:212

216

Roy A, Gauri SS, Bhattacharya M, Bhattacharya J (2013) Antimicrobial activity of CaO

nanoparticles. J Biomed Nanotechnol 9(9):15701578

27

Antimicrobial Applications of Engineered Metal-Based Nanomaterials

519